SOME CHEMICAL MODIFICATIONS OF ISTAMYCIN B

Sir:

As reported in our previous paper,1) 6'-N,3-Odidemethylistamycin A which was synthesized starting from 3',4'-dideoxyneamine through an aziridine intermediate showed stronger activity than istamycin A against pseudomonas strains. 3-O-Demethylistamycin B and its 2"-N-formimidoyl derivative synthesized from istamycin B₀ also exhibited excellent activities against Gram-positive and -negative bacteria including pseudomonas.²⁾ In this communication, we wish to report some chemical modifications of istamycin B at the 3- and 5-positions. These include the synthesis and activity of 5-epi (1), 3-O-demethyl-5-epi (2), 3-O-demethyl-3-epi (3), 3-demethoxy (4) and 3-demethoxy-2"-N-formimidoyl (5) derivatives of istamycin B.* Compounds 4 and 5 are more active than istamycin B (6) or 3-O-demethylistamycin B (7).

The free amino and methylamino groups of istamycin B₀ (8) were protected with *tert*-butoxy-carbonyl (Boc) groups by reaction with *tert*-butyl *S*-4,6-dimethylpyrimid-2-ylthiocarbonate (Kokusan Chemical Works) in methanol to yield 1,4,2',6'-tetra-*N*-Boc-istamycin B₀ (9, $C_{35}H_{64}N_4O_{12}$), in quantitative yield, mp 101~112°C (decomp.), $[\alpha]_D^{22} + 100°$ (*c* 0.67, methanol).

Epimerization of the 5-hydroxyl group of **9** by oxidation with dimethyl sulfoxide, trifluoroacetic anhydride and triethylamine in dichloromethane at -70° C under an argon atmosphere, followed by sodium borohydride reduction in methanol gave preferentially 1,4,2',6'-tetra-*N*-Boc-5-*epi*istamycin B₀ (10) in 83% yield. Removal of the Boc groups of 10 with 90% trifluoroacetic acid, followed by column chromatography on Amberlite CG-50 (NH₄⁺) afforded 5-epi-istamycin B₀ (11) as the hemicarbonate $(C_{15}H_{32}N_4O_4 \cdot \frac{1}{2}H_2CO_3)$, in 90% yield, $[\alpha]_{D}^{21} + 89^{\circ}$ (c 0.87, water), EI-MS: m/z 332 (M⁺). The structure of 11 was confirmed by its ¹H NMR spectrum (Table 1). 5-Epi-istamycin B (1) was synthesized in 38% yield from 11 by the selective 1,2',6'-tri-N-protection of 11 with 2-(Boc-oxyimino)-2-phenylacetonitrile (Boc-ON, Aldrich, 3 equiv.) in the presence of $Ni(OAc)_2 \cdot 4H_2O$ (2 equiv.), acylation with the N-hydroxysuccinimide ester of N-Bocglycine (2 equiv.) in dioxane at 50°C, followed by removal of the Boc groups with 90% trifluoroacetic acid. By column chromatography on Amberlite CG-50 (NH₄⁺) eluted with $0.2 \sim 0.4$ M NH₄OH, 1 was obtained as the sesquicarbonate $(C_{17}H_{35}N_5O_5 \cdot \frac{3}{2}H_2CO_3)$, mp 110°C (decomp.), $[\alpha]_{\rm D}^{18}$ +68° (c 0.3, water), EI-MS: m/z 389 (M⁺).

Protection of the amino and methylamino groups of 3-O-demethylistamycin $B_0^{(2)}$ (12) with the Boc group gave 1,4,2',6'-tetra-N-Boc-3-Odemethylistamycin B_0 [13, $C_{34}H_{62}N_4O_{12} \cdot H_2O_{13}$, mp 120 ~ 122°C (decomp.), $[\alpha]_{D}^{23} + 76^{\circ} (c 1, chloro$ form)] in 93% yield. Preferential O-acylation of 13 with benzoyl chloride (2 equiv.) in pyridine at room temperature for 6 hours yielded the 3-Obenzoyl derivative 14 in 96% yield. 3-O-Demethyl-5-epi-istamycin B₀ [16, C₁₄H₃₀N₄O₄. ${}^{3}_{2}H_{2}CO_{3}$, mp 80~100°C (decomp.), $[\alpha]_{D}^{21}+76^{\circ}$ (c 0.23, water), EI-MS: m/z 318 (M⁺), 69% yield from 14 through 15] and 3-O-demethyl-5-epiistamycin B [2, C16H33N5O5 · H2CO3, mp 105°C (decomp.), $[\alpha]_{D}^{18} + 67^{\circ}$ (c 0.26, water), EI-MS: m/z 375 (M⁺), 82% yield from 16] were synthesized by the same method described for the

^{*} Satisfactory elemental analyses and reasonable NMR spectral data were obtained for all the compounds cited in this report.

Proton	11 (pD 3)		10	5 (pD 2)	19 (pD 3)		
	δ , ppm	J, Hz	δ , ppm	J, Hz	δ , ppm	J, Hz	
1	~4.1		~4.1		4.64	11.2, 6.3, 3.4	
2a	2.38	12, 12, 10.5	~2.3		2.76	14.2, 11.2, 3.2	
2e	3.09	12, 4.5, 4, <1	2.84	11, 5, 4, <1	2.71	14.2, 6.3, 3.2, 1	
3	4.28	10.5, 10, 4.5	4.57	11, 10.5, 5	4.99	3.9, 3.2, 3.2, 1.2	
4	~4.2		~4.2		4.04	3.9, 3.7	
5	4.72	11, 2.8	4.70	11, 2.8	5.14	3.7, 3.4, 1.2	
6	5.07	2.8, 2.8, <1	5.04	2.8, 2.8, <1	4.91	3.4, 3.4, 1	
1'	6.23	3.5	6.22	3.5	6.01	3.7	
OMe	4.02						
NMe	3.31		3.31		3.34		
	3.29		3.29		3.29		

Table 1. Significant ¹H NMR chemical shifts and coupling constants of compounds 11, 16 and 19.

The ¹H NMR spectra were determined in D₂O and TMS was used as the external reference.

synthesis of **11** and **1**. The structure of **16** was confirmed by its ¹H NMR spectrum (Table 1).

Treatment of 13 with p-toluenesulfonyl chloride (3 equiv.) in pyridine at 100°C for 3 hours gave 1, 2',6'-tri-N-Boc-4-N,3-O-carbonyl-3-O-demethyl-3-epi-istamycin B₀ (17, IR: 1745 cm⁻¹) in 93% yield. Treatment of 17 with Ba(OH)₂·8H₂O (2 equiv.) in 50% aqueous dioxane at 100°C for 2 hours gave 1,2',6'-tri-N-Boc-3-O-demethyl-3epi-istamycin B₀ (18) in 78% yield. Compound 18 was acylated with the N-hydroxysuccinimide ester of N-Boc-glycine (1.5 equiv.) in dioxane at 60°C for 16 hours and then the Boc groups were removed with 90% trifluoroacetic acid to yield 3-O-demethyl-3-epi-istamycin B (3, 25% yield) as the disulfate trihydrate $[C_{18}H_{33}N_5O_5\cdot 2H_2SO_4\cdot$ $3H_2O$, mp 209 ~ 231°C (decomp.) $[\alpha]_D^{20} + 59^\circ$ (c 1, water), EI-MS: m/z 375 (M⁺)], which was purified by column chromatography on carbon and Amberlite IRA-400 (SO₄²⁻). Compound **3** in alkaline solution was readily changed into 3-*O*demethyl-3-*epi*-istamycin B₀ (**19**), $[\alpha]_D^{20}$ +91° (*c* 1, water), EI-MS: *m*/*z* 318 (M⁺). The structure of **19** was confirmed by its ¹H NMR spectrum (Table 1).

1,2',6' - Tri- *N*-Boc-*O*-demethylistamycin B_0^{20} (20) which was derived from 12 was treated with carbonyldiimidazole (1.1 equiv.) in toluene at 60°C for 2.5 hours to afford the 4,5-carbamate (21, IR: 1755 cm⁻¹) in 81% yield. Chlorination of 21 with sulfuryl chloride (3 equiv.) in pyridine at -30° C for 10 minutes and then at -10° C for 3.5 hours, followed by reduction with tributyl-stannane in toluene under an argon atmosphere in the presence of α, α' -azobisisobutyronitrile at 120°C for 3 hours afforded the 3-demethoxy

Table 2. Minimum inhibitory concentrations on Mueller-Hinton agar plates.

	Minimum inhibitory concentrations*, µg/ml								
Test organism	1 ³ / ₂ H ₂ CO ₃	$\frac{2}{H_2CO_3}$	$\begin{array}{c} 3\\ 2H_2SO_4 \\ 3H_2O \end{array}$	4 2H ₂ O	$5\atop{\begin{array}{c}2H_2SO_4\\4H_2O\end{array}}$	$\begin{array}{c} 6 \\ \frac{1}{2} \mathrm{H}_2 \mathrm{CO}_3 \cdot \\ \frac{1}{2} \mathrm{H}_2 \mathrm{O} \end{array}$	$\begin{array}{c} 7\\ \frac{3}{2}H_2CO_3 \end{array}$		
Staphylococcus aureus 209P S. aureus Smith S. aureus Ap01 ^a) S. epidermidis 109 ^a) Micrococcus flavus FDA16 M. luteus PC11001 Bacillus anthracis B. subtilis PC1219 B. subtilis NRRL B-558 B. cereus ATCC10702 Corynebacterium bovis 1810 Munchesterium emergenetis	$\begin{array}{c} 1.56\\ 0.78\\ 3.13\\ 1.56\\ 6.25\\ 1.56\\ 1.56\\ 0.78\\ 0.78\\ 6.25\\ 1.56\end{array}$	$\begin{array}{c} 1.56\\ 0.78\\ 3.13\\ 0.78\\ 6.25\\ 1.56\\ 0.78\\ 0.78\\ 0.78\\ 12.5\\ 1.56\end{array}$	$\begin{array}{c} 0.78\\ 0.39\\ 1.56\\ 0.78\\ 12.5\\ 0.78\\ 0.78\\ 0.39\\ 0.78\\ 3.13\\ 0.39\end{array}$	$\begin{array}{c} < 0.20 \\ 0.20 \\ 0.39 \\ < 0.20 \\ 3.13 \\ < 0.20 \\ 0.39 \\ < 0.20 \\ < 0.20 \\ 1.56 \\ < 0.20 \end{array}$	$\begin{array}{c} 0.39 \\ < 0.20 \\ 0.39 \\ 0.20 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.20 \\ < 0.20 \\ < 0.20 \\ 1.56 \\ < 0.20 \end{array}$	$\begin{array}{c} 0.39\\ 0.39\\ 0.78\\ 0.39\\ 12.5\\ 0.39\\ 0.78\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 6.25\\ 0.39\end{array}$	$\begin{array}{c} 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.78\\ 0.39\\ 0.39\\ 1.56\\ 0.39\end{array}$		
Mycobacterium smegmatis ATCC607 Escherichia coli NIHJ E. coli K-12 R5 ^b) E. coli K-12 R3 ⁸ E. coli K-12 R3 ⁸ E. coli K-12 JSR11-2 ^e) E. coli K-12 ML1629 ^e) E. coli K-12 ML1630 E. coli K-12 ML1410 R81 ^e) E. coli K-12 ML1410 R81 ^e) E. coli K-12 LA290 R55 ^d E. coli K-12 LA290 R56 E. coli K-12 LA290 R56 E. coli K-12 LA290 R64 E. coli JR67 ^d , ^e) E. coli JR66/W677 ^d , ^e) E. coli K-12 C600 R135 ^f) E. coli JR225 ^f)	$\begin{array}{c} 3.13\\ 1.56\\ 1.56\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 1.56\\ 3.13\\ 1.56\\ 3.13\\ 1.56\\ 3.13\\ 3.13\\ 1.56\end{array}$	$\begin{array}{c} 3.13\\ 1.56\\ 1.56\\ 6.25\\ 3.13\\ 12.5\\ 6.25\\ 6.25\\ 3.13\\ 3.13\\ 3.13\\ 6.25\\ 3.13\\ 6.25\\ 3.13\\ 3.13\\ 3.13\\ 3.13\end{array}$	$\begin{array}{c} 1.56\\ 0.78\\ 1.56\\ 3.13\\ 1.56\\ 6.25\\ 3.13\\ 6.25\\ 3.13\\ 3.13\\ 1.56\\ 1.56\\ 3.13\\ 0.78\\ 6.25\\ 1.56\\ 1.56\\ 1.56\end{array}$	$\begin{array}{c} 0.39\\ 0.39\\ 0.78\\ 1.56\\ 0.39\\ 0.78\\ 3.13\\ 1.56\\ 0.78\\ 1.56\\ 0.39\\ 0.78\\ 0.39\\ 0.78\\$	$\begin{array}{c} 0.39\\ 0.20\\ 0.39\\ 0.78\\ 0.39\\ 0.78\\ 0.39\\ 1.56\\ 1.56\\ 0.39\\ 0.78\\ 0.39\\ 0.78\\ 0.39\\ 0.78\\ 0.39\\ 0.78\\ 0.39\\$	$\begin{array}{c} 0.78\\ 0.39\\ 0.78\\ 1.56\\ 0.78\\ 1.56\\ 3.13\\ 3.13\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 12.5\\ 1.56\end{array}$	$\begin{array}{c} 0.78\\ 0.39\\ 0.78\\ 3.13\\ 0.78\\ 1.56\\ 1.56\\ 3.13\\ 3.13\\ 1.56\\ 0.78\\ 1.56\\ 0.78\\ 1.56\\ 1.56\\ 1.56\\ 0.78\end{array}$		
Klebsiella pneumoniae PCI602 K. pneumoniae 22#3038 ^d , ^{e)} Shigella dysenteriae JS11910 S. flexneri 4b JS11811 S. sonnei JS11746 Salmonella typhi T-63 S. enteritidis 1891 Proteus vulgaris OX19 P. rettgeri GN311 P. rettgeri GN466 P. inconstans 2991 ^{g)} Serratia marcescens Serratia sp. 4 Pseudomonas aeruginosa A3 P. aeruginosa H0 ^{e)} P. aeruginosa H11 P. aeruginosa 91 ⁽⁵⁾ P. aeruginosa 21-75 ^{h)} P. aeruginosa PST1 ⁽¹⁾	$\begin{array}{c} 3.13\\ 6.25\\ 6.25\\ 6.25\\ 3.13\\ 0.78\\ 3.13\\ 1.56\\ 0.78\\ 0.78\\ 3.13\\ 12.5\\ 6.25\\ 6.25\\ 100\\ 0.78\\ 100\\ 0.78\\ 100\\ 0.78\\ 100\\ 0.78\\ 100\\ 0.100\\ >100\\ >100\\ >100\\ >100\\ 100\\ \end{array}$	$\begin{array}{c} 3.13\\ 6.25\\ 6.25\\ 6.25\\ 0.78\\ 6.25\\ 1.56\\ 1.56\\ 1.56\\ 3.13\\ 6.25\\ 6.25\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.0\\ 100\\ 100\\ 50\\ \end{array}$	$\begin{array}{c} 1.56\\ 6.25\\ 6.25\\ 6.25\\ 3.13\\ 0.78\\ 3.13\\ 1.56\\ 0.78\\ 0.78\\ 1.56\\ 3.13\\ 1.56\\ 3.13\\ 1.56\\ 3.13\\ 2.5\\ <0.20\\ 50\\ 25\\ 100\\ 12.5\\ 12.5\\ 100\\ 50\\ 100\\ 50\\ \end{array}$	$\begin{array}{c} 0.78\\ 1.56\\ 1.56\\ 1.56\\ 0.20\\ 1.56\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 0.39\\ 1.56\\ 0.78\\ 3.13\\ 12.5\\ 0.39\\ 12.5\\ 12.5\\ 5.25\\ 6.25\\ 5.0\\ 50\\ 12.5\\ \end{array}$	$\begin{array}{c} 0.78\\ 1.56\\ 1.56\\ 1.56\\ 0.39\\ 1.56\\ <0.20\\ 0.39\\ <0.20\\ 0.78\\ 1.56\\ 0.78\\ 12.5\\ 12.5\\ 12.5\\ 0.39\\ 25\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 12.5\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 12.5\\ 50\\ 25\\ 50\\ 50\\ 25\\ 50\\ 50\\ 50\\ 25\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 5$	$\begin{array}{c} 3.13\\ 1.56\\ 3.13\\ 3.13\\ 0.78\\ 0.39\\ 3.13\\ 0.39\\ 0.78\\ 0.78\\ 1.56\\ 3.13\\ 1.56\\ 25\\ 50\\ 1.56\\ 50\\ 100\\ 50\\ 50\\ 100\\ 50\\ 50\\ 100\\ 50\\ 50\\ 100\\ 50\\ 50\\ 100\\ 50\\ 50\\ 50\\ 100\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ $	$\begin{array}{c} 1.56\\ 3.13\\ 3.13\\ 3.13\\ 1.56\\ 0.39\\ 1.56\\ 0.39\\ 0.39\\ 0.39\\ 0.78\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.56\\ 1.25\\ 12.5\\ 0.20\\ 12.5\\ 12.5\\ 25\\ 6.25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 12.5\\ \end{array}$		
P. aeruginosa ROS134/PU21 ^{t)} P. aeruginosa K-Ps102 ¹⁾ P. maltophilia GN907 ¹⁾	>100 100 >100	100 25 >100	>100 25 >100	50 12.5 100	100 25 >100	>100 50 100	50 6.25 100		

Resistance: a) AAD(4'), b) AAC(6'), c) APH(3')-I, d) AAD(2"), e) APH(3')-II, f) AAC(3), g) AAC(2'), h) APH(3')-III, i) permeability.

* Concentrations are shown as the free bases.

derivative 22 in 92% yield. Treatment of 22 with Ba(OH)₂·8H₂O in an aqueous dioxane solution at 100°C overnight gave 1,2',6'-tri-*N*-Boc-3-demethoxyistamycin B₀ (23) in 90% yield, mp 131~ 135°C, $[\alpha]_{D}^{20}+70^{\circ}$ (c 0.3, chloroform).

Acylation of 23 with the *N*-hydroxysuccinimide ester of *N*-Boc-glycine, removal of the Boc groups with 90% trifluoroacetic acid, followed by column chromatography on Amberlite CG-50 (NH₄⁺) gave 3-demethoxyistamycin B (4) as the dihydrate (C₁₀H₃₀N₅O₄·2H₂O) in 49% yield, mp 88~92°C, (decomp.), $[\alpha]_{2}^{p_4}+147^{\circ}$ (*c* 0.35, water), EI-MS: *m/z* 359 (M⁺).

3-Demethoxy-2"-*N*-formimidoylistamycin B (5) was synthesized from **23** by acylation with the *N*hydroxysuccinimide ester of *N*-benzyloxycarbonylglycine, catalytic hydrogenation with 5% Pd-C, treatment with ethylformimidate hydrochloride³⁰ in ethanol, followed by removal of the Boc groups with 90% trifluoroacetic acid. Purification by column chromatography on Amberlite IRA-400 (SO₄²⁻) and carbon gave **5**, obtained as the disulfate tetrahydrate (C₁₇H₃₄-N₈O₄·2H₂SO₄·4H₂O, 15% yield from **23**), mp 201~220°C (decomp.), $[\alpha]_{2}^{2+}+89^{\circ}$ (*c* 0.5, water), SIMS (glycerol matrix): *m*/*z* 583 [(MH+2H₂-SO₄)⁺], 485 [(MH+H₂SO₄)⁺], 387 (MH⁺).

The minimum inhibitory concentrations of compounds $1 \sim 5$ were tested on a Mueller-Hinton agar medium and compared with those of 6 and 7. As shown in Table 2, all these derivatives have good activity. Compounds 4 and 5 are more active than 6 and 7 against Gram-positive

and -negative bacteria, but not pseudomonas strains. The strong antibacterial activity of **4** indicates a predominant role of the amino groups in the antibacterial action as has been observed in the case of hexadeoxykanamycin.⁴⁾

Daishiro Ikeda Shuichi Gomi Shinichi Kondo Hamao Umezawa

Institute of Microbial Chemistry 14–23, 3-Chome Kamiosaki, Shinagawa-ku, Tokyo 141 Japan

(Received December 8, 1982)

References

- IKEDA, D.; Y. HORIUCHI, S. KONDO & H. UMEZAWA: Synthesis of demethyl derivatives of istamycin A. J. Antibiotics 33: 1281~1288, 1980
- HORIUCHI, Y.; D. IKEDA, S. KONDO & H. UME-ZAWA: Synthesis of the 3-O-demethyl and 2"-N-formimidoyl derivatives of istamycin B. J. Antibiotics 33: 1577~1580, 1980
- OHME, R. & E. SCHMITZ: A simple synthesis of alkyl formimidates. Angew. Chem. Internat. Ed. 6: 566, 1967
- UMEZAWA, H.: Deoxyaminoglycosides active against resistant strains. *In* Drug Resistance in Bacteria. Genetics, Biochemistry, and Molecular Biology. *ed.*, S. MITSUHASHI, pp. 245~ 260, Japan Scientific Societies Press, Tokyo, 1982